
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2023, 10(9):27-32

Research Article ISSN: 2394 - 658X

27

Environment Variable Management in React with Azure Static

Web App

Bhargav Bachina

ABSTRACT

In the evolving landscape of web development, the deployment and construction of frontend applications have

seen significant advancements, particularly with the advent of serverless architectures and containerized

solutions. Among these innovations, Azure Static Web Apps service, a recent offering from Microsoft Azure,

stands out for its streamlined approach to hosting and managing static web applications, currently available in

preview mode. This technical paper delves into the practical aspects of utilizing Azure Static Web Apps service

for deploying React applications, with a special focus on the separation of configuration from code. This

separation enhances maintainability and allows for dynamic environment-specific adjustments without the need

for multiple codebases builds. We outline the essential prerequisites for employing this service, alongside a

step-by-step guide on setting up an example project.

Key words: JavaScript, React, Web Development, Cloud Computing, Azure

__

INTRODUCTION

In the current era, the methodologies for constructing and deploying frontend applications have diversified

significantly, incorporating innovative technologies like serverless frameworks and containerization. Among

these modern deployment strategies, the Azure Static Web Apps service emerges as a notable solution. This

service, a recent addition to the Microsoft Azure suite, is specifically tailored for static web applications and is

currently available in preview mode, highlighting its cutting-edge nature.

The practice of decoupling configuration details from the application code has become a standard approach in

software development. This strategy enhances the application's flexibility and maintainability by enabling

runtime configuration and eliminating the necessity for separate code builds for different deployment

environments. Such an approach proves particularly beneficial in dynamic and scalable deployment scenarios.

In this detailed exploration, we will delve into the application of environment variables within the context of the

Azure Static Web Apps service, particularly focusing on React-based applications. The discussion will

encompass the advantages of this separation in terms of ease of maintenance and operational efficiency. By

understanding how to effectively leverage environment variables during the development and deployment

phases of Azure Static Web Apps, developers can significantly streamline their workflows and adapt more

readily to varying environmental requirements.

• Prerequisites

• Example Project

• How To Configure In Local Development

• How To Configure in Other Environments

• Summary

• Conclusion

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(9):27-32

28

PREREQUISITES

You need to know a lot of things as prerequisites if you want to understand the Azure Static web apps service.

First, you need to create two accounts: a Github account to store the source code and Microsoft Account to

deploy that code using Azure static web app service. Let’s create these accounts by following the below links.

You can start both for free.

• Github Account (https://github.com/)

• Microsoft Azure Account (https://azure.microsoft.com/en-us/)

Since we are building a React application you need to be familiar with React CLI, nodejs, and typescript. First,

you need to install NodeJS, create-react-app, and then you can create an application with React CLI.

• NodeJS (https://nodejs.org/en/download/)

• create-react-app (https://create-react-app.dev/)

• Typescript (https://www.typescriptlang.org/)

• React Bootstrap (https://react-bootstrap.github.io/)

• VSCode (https://code.visualstudio.com/)

All the API code that you develop for the application will be converted to Azure functions at the time of

deployment. You need to be familiar with the following. When you make API calls from your app you need to

proxy those calls to API you need a Live Server extension for that.

• Azure Functions (https://azure.microsoft.com/en-us/services/functions/)

• Azure Functions extension for Visual Studio Code

(https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions)

• Live Server extension for Visual Studio Code

(https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer)

EXAMPLE PROJECT

Here is an example of a simple todo application that creates, retrieves, edits, and deletes tasks. In a normal way,

we actually run the API on the NodeJS server, and you can use MongoDB to save all these tasks.

https://miro.medium.com/v2/resize:fit:720/0*T8idJ6q3UWWFD2cU.gif

When it comes to Azure Static web apps you have to run the API with Azure Functions. We need to go through a

series of steps to set it up. Let’s dive into those steps in the following sections.

In the above example, we want to configure the header color and text color as environment variables so that we

can configure these at runtime or change it without touching the code.

You can clone the repository and run it on your local machine. You can access the application on localhost and on

port 3000.

// clonegit clone https://github.com/bbachi/react-azure-static-web-app.git

// Run the appcd todo-appnpm installnpm start

// Run the APIcd apinpm installnpm start

HOW TO CONFIGURE IN LOCAL DEVELOPMENT

First, we need to understand how we can get the settings from the API before we load the React app. You need to

understand the React Hooks for that, especially, useEffect() with an empty array.

If you look at the below example, we are fetching the data in the react hook. If we pass an empty array to the

hook, it is called once after the component is mounted.

https://gist.github.com/bbachi/4185e7af857505803d544309c0399bc1#file-app-js

A.API

Let’s see how we can pass environment variables in local development. When you create an Azure Function

NodeJS project with Azure Core Tools, the file called local.settings.json is created in which you can put

variables. For example, let’s define some variables for testing.

https://gist.github.com/bbachi/8d2ea9610d8cba6fa9cd36824bb8c960#file-local-settings-json

We have defined variables in the settings JSON. Let’s create an API to fetch these settings and also, we will see

how to read these in the code.

https://gist.github.com/bbachi/78f2f33d5394636541b091efc0cff2d0#file-function-json

https://miro.medium.com/v2/resize:fit:720/0*T8idJ6q3UWWFD2cU.gif
https://github.com/bbachi/react-azure-static-web-app.git
https://gist.github.com/bbachi/4185e7af857505803d544309c0399bc1#file-app-js
https://gist.github.com/bbachi/8d2ea9610d8cba6fa9cd36824bb8c960#file-local-settings-json
https://gist.github.com/bbachi/78f2f33d5394636541b091efc0cff2d0#file-function-json

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(9):27-32

29

We have defined a function and exposed these settings on route /settings. Notice that we are reading environment

variables with process.env. Let’s run the API and test the API as below.

Figure 1: API Running

Let’s hit that URL in the browser and see that in action.

Figure 2: API working

B. React

We have created an API that reads the environment variables and exposes that as a GET REST API. We will

know how we should read this in the React application. We need to get these settings before we load the app

since the header is the first one to load in the browser. We must use the react hook useEffect as mentioned above.

Let’s define the function in the service which calls the settings API and get those details. Here is the service file.

https://gist.github.com/bbachi/dd0f7443ac71522dfd61b38c48b75daa#file-todoservice-js

Once you define these you need to import this in the App.js as below. Notice that we are calling the API through

App Service. We are defining the state variable for the settings and calling the API in the useEffect() lifecycle

hook as below. Since we are passing the empty array, it is called only once and we are setting the state variable

appSettings and pass that to the Header component.

https://gist.github.com/bbachi/c474a1b321cdaf23013150b70b2fcccc#file-app-js

Here is the Header Component that takes the props and loads only when these are available.

https://gist.github.com/bbachi/3840fb73801b832f77f482538903778a#file-header-js

We are using the Style property to dynamically apply these styles to the Header after reading and setting these

variables in the Component file. You can see those styles applied all the way from the local settings file.

Figure 3: Styles applied to the Header

HOW TO CONFIGURE IN OTHER ENVIRONMENTS

Let’s push the code and see how we can configure the same thing in Azure. You can see the deployment started

after you push changes to GitHub.

https://gist.github.com/bbachi/dd0f7443ac71522dfd61b38c48b75daa#file-todoservice-js
https://gist.github.com/bbachi/c474a1b321cdaf23013150b70b2fcccc#file-app-js
https://gist.github.com/bbachi/3840fb73801b832f77f482538903778a#file-header-js

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(9):27-32

30

Figure 4: Deployment in Progress

Once the deployment is completed you can see the status in the Azure portal as below.

Figure 5: Deployment Status

You can load the application now in the browser without any environment variables defined. You can notice

there is no background color and header text color.

Figure 6: Application without Configuration

Let’s define these configuration variables by clicking on the configuration on the left blade.

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(9):27-32

31

Figure 7: Configuration

We have defined these variables below.

Figure 8: Environment Variables

You can refresh the page after we define these variables. You can see those styles applied to the header.

Figure 9: Styles applied to the header

You can see the API call working and fetching those values.

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(9):27-32

32

Figure 10: Settings Call

SUMMARY

• Building with Azure Static Web apps service is one of them and it is recently released by Microsoft

Azure and it’s in the preview mode.

• We usually separate some configuration stuff from the code so that we can configure that at runtime, or

it becomes easier to maintain because you don’t have to build the code for every environment

separately.

• You need to understand how Lifecycle Hooks works in React since we need to get these settings before

you load the app in the browser.

• When you create an Azure Function NodeJS project with Azure Core Tools, the file called

local.settings.json is created in which you can put variables.

• You must configure environment variables in the configuration section under settings in the Azure

Static Web Apps Service.

CONCLUSION

In conclusion, this paper has detailed the process and advantages of utilizing the Azure Static Web Apps service,

a recent innovation by Microsoft Azure currently in preview mode, for building and deploying web applications.

We highlighted the importance of decoupling configuration details from the application code, which not only

simplifies maintenance but also facilitates the customization of runtime environments without necessitating

multiple builds for different settings. Furthermore, we emphasized the critical understanding of React Lifecycle

Hooks to effectively manage application settings before browser loading. The integration of Azure Function

NodeJS projects with Azure Core Tools, which generates a local.settings.json file for variable storage, was

discussed to illustrate practical implementation.

Lastly, the paper outlined the necessary steps to properly configure environment variables within the Azure

Static Web Apps Service settings, underscoring the significance of environment management in modern web

development. By adopting these practices, developers can enhance the flexibility, maintainability, and

scalability of their React applications, leveraging the full capabilities of Azure's cloud infrastructure for efficient

web app deployment.

REFERENCES

[1]. React Official Documentation https://react.dev/

[2]. Azure Documentation https://learn.microsoft.com/en-us/docs/

[3]. Azure Static Web Apps https://azure.microsoft.com/en-us/products/app-service/static

https://azure.microsoft.com/en-us/products/app-service/static

