
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2023, 10(6):26-37

Research Article ISSN: 2394 - 658X

26

Efficient RESTful API Development with NodeJS, Express, and

PostgreSQL

Bhargav Bachina

ABSTRACT

This paper explores the construction of REST APIs using NodeJS and PostgreSQL, guided by the principles of

REpresentational State Transfer (REST). REST is a popular architectural style for designing networked

applications, due to its stateless communication and standard operations, which enhance system interoperability.

The core of our investigation focuses on leveraging the Express Framework to initiate and structure a RESTful

API, subsequently integrating PostgreSQL to manage database operations. We commence by outlining the

necessary prerequisites for building a REST API and progress through the creation of an example project to

demonstrate practical implementation. The discussion extends to setting up the project structure, installing

PostgreSQL on a local machine, and utilizing PGAdmin for database management. Critical to the development

process is the establishment of a database schema and the integration of PostgreSQL within the Express

application to facilitate data interactions. Further, we delve into the specifics of implementing CRUD (Create,

Read, Update, Delete) operations, essential for any RESTful service. The paper also addresses the importance of

logging for debugging and monitoring purposes, and the integration of Swagger for API documentation and

endpoint testing. By providing a step-by-step guide, from environment setup to application configuration, this

document aims to equip developers with the knowledge to build efficient, scalable, and maintainable REST

APIs using NodeJS and PostgreSQL, contributing to the broader field of web application development.

Key words: Programming, Web Development, Nodejs, Software Development, Software Engineering

__

INTRODUCTION

REST, short for Representational State Transfer, is a set of principles and guidelines that aid in the design and

development of scalable and reliable systems for intercommunication over the web. This architectural style

streamlines the interaction between client and server through stateless operations, ensuring a standardized

approach for transmitting data across various systems. In this detailed exploration, we aim to demonstrate the

process of constructing a RESTful API utilizing NodeJS and PostgreSQL for backend data management. The

journey begins with an introduction to the Express Framework, a powerful and flexible Node.js web application

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

27

framework that provides a robust set of features to develop web and mobile applications. We will guide you

through the initial setup process, illustrating how to structure a project effectively to support RESTful

architecture

Following the setup, the discussion transitions to the integration of PostgreSQL, a sophisticated open-source

relational database system known for its reliability, feature robustness, and performance. We will walk through

the steps necessary to initiate a PostgreSQL database, including installation, configuration, and the creation of

database tables essential for storing and managing data. The final segment of our exploration involves bridging

the NodeJS application with the PostgreSQL database. This includes configuring the NodeJS environment to

communicate seamlessly with the database, thereby enabling the retrieval, manipulation, and storage of data

through the constructed REST API. By following this comprehensive guide, developers will gain a deeper

understanding of REST principles and acquire the skills needed to develop a fully functional REST API with

NodeJS and PostgreSQL, enhancing their capabilities in web services development and database integration.

• Prerequisites

• Example Project

• Project Structure

• Install PostgreSQL on Local Machine

• Install PGAdmin Tool

• Create a Database Table

• Configure PostgreSQL in Express App

• CRUD Operations

• Logging

• Swagger

• Summary

• Conclusion

PREREQUISITES

There are some prerequisites for this post. You need to have a NodeJS installed on your machine and some other

tools that are required to complete this project.

• NodeJS (https://nodejs.org/en/)

• Express Framework (https://expressjs.com/)

• PGAdmin (https://www.pgadmin.org/)

• PostgreSQL (https://www.postgresql.org/)

• Postgresapp (https://postgresapp.com/)

• Node-Postgres (https://www.npmjs.com/package/pg)

• VSCode (https://code.visualstudio.com/)

• Swagger (https://swagger.io/)

• Postman (https://www.postman.com/)

• Nodemon (https://nodemon.io/)

• Dotenv (https://www.npmjs.com/package/dotenv)

NodeJS: As an asynchronous event-driven JavaScript runtime, Node.js is designed to build scalable network

applications.

Express Framework: Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications.

PGAdmin: pgAdmin is an Open-Source administration and development platform for PostgreSQL.

PostgreSQL: Open-Source relational Database

Node-Postgres: Non-blocking Postgresql Client for NodeJS

VSCode: The editor we are using for the project. It’s open-source and you can download it here.

Swagger: API documentation

Postman: Manual testing your APIs

Nodemon: To speed up the development.

https://nodemon.io/

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

28

If you are new to NodeJS and don’t know how to build REST API with it, I would recommend going through the

below article. We used the project from this article as a basis for this post.

How to write production-ready Node.js Rest API — Javascript version (https://medium.com/bb-tutorials-and-

thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106)

EXAMPLE PROJECT

Here is the Github link for the example project you can just clone and run it on your machine.

// clone the projectgit clone https://github.com/bbachi/nodejs-restapi-postgresql.git

Here are the main and controller classes. The server.js file is the main file and starting file of the API and the

controller is called from here.

https://gist.github.com/bbachi/a90d4016c0bea72105b135f775eaa6b5#file-server-js

Here is the controller file which has four methods.

https://gist.github.com/bbachi/ee9f4fb39572ed2ecf02a579aba3bc33#file-task-controller-js

We are using nodemon for the development phase that speeds up your development. You just need to run this

command after installing all dependencies.

// install dependenciesnpm install

// start the server in development phasenpm run dev

https://miro.medium.com/v2/resize:fit:720/1*4f-1Pggz90HI-b49jRa0lQ.gif

PROJECT STRUCTURE

Let’s understand the project structure that we have here. The starting point of the application is server.js and we

have all the scripts, dependencies, etc in the package.json.

Figure 1: Project Structure

We have a controller, service, and repository in place. All the logging-related configuration goes into

api.logger.js under the folder logger. We have the .env file for all the environment-related configurations. We

have swagger.json and swagger.css for the swagger docs. We have a db.config.js file for all the database

configurations.

INSTALL POSTGRESQL ON LOCAL MACHINE

There are so many ways to install PostgreSQL on your local machine from the below link. The Postgres.app is the

easiest and fastest one.

https://www.postgresql.org/download/macosx/

You can click on the Postgres.app and download the app from that page.

https://medium.com/bb-tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106
https://medium.com/bb-tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-db64d3941106
https://gist.github.com/bbachi/a90d4016c0bea72105b135f775eaa6b5#file-server-js
https://gist.github.com/bbachi/ee9f4fb39572ed2ecf02a579aba3bc33#file-task-controller-js
https://miro.medium.com/v2/resize:fit:720/1*4f-1Pggz90HI-b49jRa0lQ.gif
https://www.postgresql.org/download/macosx/

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

29

Figure 2: Postgres.app

You can go through the below installation steps and initialize the Database.

Figure 3: Download and Install Instructions

If everything is successful, you can see the below screen with the database named after the user name on the

machine.

Figure 4: Postgres.app

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

30

INSTALL PGADMIN TOOL

The pgAdmin tool is the open-source administration and development platform for PostgreSQL. You can install

this tool from the following location.

https://www.pgadmin.org/

Figure 5: pgAdmin Tool

Once installed, you can open that and connect to the PostgreSQL server with the following credentials. It changes

based on your user name folder.

// name of the servername: local (You can name anything)

// Hostnamehost name: localhost

// User Nameusername: <user name based on the above postgres.app>

Figure 6: pgAdmin Tool

Let’s connect to the server by clicking on the register as below.

Figure 7: Register Server

https://www.pgadmin.org/

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

31

The server name can be anything that you give for your server such as local, dev, test, etc.

Figure 8: Server Name

Let’s give all the details such as HostName, port, username, etc under the connection tab.

Figure 9: Connection Details

Once connected, you can see the details below.

Figure 10: Connected

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

32

CREATE A DATABASE TABLE

Let’s create a table by clicking on the Query Tool as below.

Figure 11: Query Tool

Let’s run the following query to create the database table.

https://gist.github.com/bbachi/9dbcc0530954f4a8320eda5ecd34b5c3#file-database-sql

Figure 12: Table Created

CONFIGURE POSTGRESQL IN EXPRESS APP

Let’s configure the pg Client from our application. The first thing we need to do is to get the connection string or

connection details. You can get it from the properties as below.

Figure 13: Connection Details

https://gist.github.com/bbachi/9dbcc0530954f4a8320eda5ecd34b5c3#file-database-sql

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

33

The next thing is to install the pg client with the following command.

// install client and sequelizenpm install pgnpm install sequelize

// node-postgres home pagehttps://node-postgres.com/

Let’s place the connection string and database name in the application properties file as below. You have to URL

encode the password if you have any special characters in the password.

We need to use the dotenv library for environment-specific things. Dotenv is a zero-dependency module that

loads environment variables from a .env file into process.env

(https://nodejs.org/docs/latest/api/process.html#process_process_env). Storing configuration in the environment

separate from code is based on The Twelve-Factor App (http://12factor.net/config) methodology.

The first step is to install this library npm install dotenv and put the .env file at the root location of the

projecthttps://gist.github.com/bbachi/84a2d8470359a5d618a7e2b6a60d7b75#file-env

https://gist.github.com/bbachi/84a2d8470359a5d618a7e2b6a60d7b75#file-env

We just need to put this line require('dotenv').config() as early as possible in the application code as

in the server.js file.

https://gist.github.com/bbachi/1a29181bbce1029e85af3802504a778f#file-server-js

Let’s define the configuration class where it creates a connection with the connection details from the properties.

We are using pg client to connect with PostgreSQL for all the queries. This client makes it easy for you to interact

with PostgreSQL. We are fetching the connection details with the dotenv library and connecting it to PostgreSQL

with pg client. We are exposing one function from this file connect.

Sequelize is a promise based NodeJS ORM tool for many relational databases such as Postgres, MYSQL, etc.

https://gist.github.com/bbachi/d2a5ec615c9a8477b5b3369e07bddfb3#file-db-config-js

We need to define a model for our collection as below. We need to define the schema for the collection and then

you need to pass that schema to the model and export it as a module.

https://gist.github.com/bbachi/58dce9e582edaa51699338c249087363#file-task-model-js

Finally, here is the repository class where it uses the above model for all the CRUD operations.

https://gist.github.com/bbachi/a5d0c2cdb190971fb0bbfde835633264#file-task-repository-js

We have this service file in between the controller and repository for any data manipulation if needed.

https://gist.github.com/bbachi/64f3228af4e9084194f218c8c6303986#file-task-service-js

With all the above files in place, we can hit the following URL.

http://localhost:3081/api/tasks

Figure 14: API GET URL

CRUD OPERATIONS

Let’s do some CRUD Operations.

A.Create Task

Create Task is the post-call that takes the request body and saves that into the todos collection.

URL: http://localhost:3081/api/task

https://gist.github.com/bbachi/84a2d8470359a5d618a7e2b6a60d7b75#file-env
https://gist.github.com/bbachi/1a29181bbce1029e85af3802504a778f#file-server-js
https://gist.github.com/bbachi/d2a5ec615c9a8477b5b3369e07bddfb3#file-db-config-js
https://gist.github.com/bbachi/58dce9e582edaa51699338c249087363#file-task-model-js
https://gist.github.com/bbachi/a5d0c2cdb190971fb0bbfde835633264#file-task-repository-js
https://gist.github.com/bbachi/64f3228af4e9084194f218c8c6303986#file-task-service-js
http://localhost:3081/api/tasks
http://localhost:3081/api/task

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

34

Request Body:{ "task" { "name": "asdassad", "description": "description 34 i sdescription!!", "createdby": "user" }}

Figure 15: Post Call

B. Update Task

Update Task is the put call that takes the request body and updates that into the todos collection with the same id.

URL: http://localhost:3081/api/task

Request Body:{ "task" : { "id": "1", "name": "name 1", "description": "description 1 ", "updatedby": "user" }}

Figure 16: PUT Call

C. Delete Task

Delete Task is the delete call that takes the id as a path variable and deletes it from the todos collection.

URL: http://localhost:3081/api/task/1

Figure 17: Delete Call

http://localhost:3081/api/task
http://localhost:3081/api/task/1

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

35

D. Get Tasks

Get Tasks is a simple GET URL that retrieves all the tasks from the todos collection.

URL: http://localhost:3081/api/tasks

Figure 18: GET Call

LOGGING

There are so many logger libraries, and I used the pine library for the logging. It’s always best practice to have a

separate file for logging and importing that file everywhere. You can configure and change the underlying

logging library with one file change.

I have defined the following file.

https://gist.github.com/bbachi/1fbeb2983c21950ae736a68d64c41009#file-api-logger-js

You can import this in any file like below and use these methods.

https://gist.github.com/bbachi/30cce808703910392e307fcdb2f93015#file-task-controller-js

Figure 19: Installed

You can see the notes on how to access the application because we have Notes.txt in the Chart folder as below.

You can put any information that helps the developers who use your chart.

https://gist.github.com/bbachi/f3273a5a13226853b6f675ebef0feec4#file-notes-txt

SWAGGER

The Swagger is a tool that simplifies API documentation for the services. With Swagger, you can design your

API and share it across teams very easily.

The first thing we need to do is to install swagger-related dependencies with the following command.

npm install swagger-ui-express swagger-jsdoc –save

There are two things you need to understand before implementing swagger docs to your REST API.

A. Swagger.json

The first thing is to add the file swagger.json to define the operations. You can define schemas for the

request and response objects, you can define parameters and body and descriptions of each Http operation, etc.

https://gist.github.com/bbachi/2f053a32dc096b8c999a23d50f905abf#file-swagger-json

B. Custom CSS

You can have your own custom CSS for your swagger docs Rest API. You need to define the swagger.css file

where you can put all your CSS that can be applied to the Swagger page.

https://gist.github.com/bbachi/53187853801960d536a48aaa52287482#file-swagger-css

http://localhost:3081/api/tasks
https://gist.github.com/bbachi/1fbeb2983c21950ae736a68d64c41009#file-api-logger-js
https://gist.github.com/bbachi/30cce808703910392e307fcdb2f93015#file-task-controller-js
https://gist.github.com/bbachi/f3273a5a13226853b6f675ebef0feec4#file-notes-txt
https://gist.github.com/bbachi/2f053a32dc096b8c999a23d50f905abf#file-swagger-json
https://gist.github.com/bbachi/53187853801960d536a48aaa52287482#file-swagger-css

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

36

Once you have these files swagger.json and swagger.css in place, it’s time to add the swagger-related

code in the server.js.

// import library and files

const swaggerUi = require('swagger-ui-express');const swaggerDocument = require('./swagger.json');const customCss

= fs.readFileSync((process.cwd()+"/swagger.css"), 'utf8');

// let express to use thisapp.use('/api-docs', swaggerUi.serve, swaggerUi.setup(swaggerDocument, {customCss}));

Here is the complete server.js file

https://gist.github.com/bbachi/0be92f6b1dc3543f07adfcb5663a1d77#file-server-js

You can start the project in the development environment with the following command and access the

// start the projectnpm run dev

// Access the swaggger docs herehttp://localhost:3081/api-docs/#/

Figure 20: Swagger UI

SUMMARY

• REST is an acronym for REpresentational State Transfer. Rest follows some guidelines to facilitate

communication between systems.

• You can get the connection string and configure the NodeJS application to talk to PostgreSQL with pg

client, etc.

• The Swagger is a tool that simplifies API documentation for the services. With Swagger, you can

design your API and share it across teams very easily.

• Node-Postgres: Non-blocking Postgresql Client for NodeJS

• PGAdmin: pgAdmin is an Open-Source administration and development platform for PostgreSQL.

• The Swagger is a tool that simplifies API documentation for the services. With Swagger, you can

design your API and share it across teams very easily.

CONCLUSION

In conclusion, this paper has provided a comprehensive exploration of developing RESTful APIs, adhering to

the principles of Representational State Transfer (REST), which simplifies and standardizes communication

between systems. We detailed the process of integrating a NodeJS application with a PostgreSQL database

using the pg client, facilitating seamless data interaction and management within a RESTful architecture.

Furthermore, we highlighted the significance of API documentation and design, particularly through the use of

Swagger, a tool that not only simplifies the creation of API documentation but also enhances collaboration

across development teams by providing a clear and interactive interface for API endpoints.

Additionally, the utilization of Node-Postgres, a non-blocking PostgreSQL client for NodeJS, ensures efficient

database interactions, while PGAdmin serves as a robust tool for database administration and development,

enhancing the overall development workflow. By combining these technologies and tools, developers can create

robust, efficient, and scalable web services, thus advancing the field of web development and promoting best

practices in API design and database integration. This paper aims to serve as a guide for developers looking to

leverage REST principles and the PERN stack for efficient full-stack application development

https://gist.github.com/bbachi/0be92f6b1dc3543f07adfcb5663a1d77#file-server-js

Bachina B Euro. J. Adv. Engg. Tech., 2023, 10(6):26-37

37

REFERENCES

[1]. JavaScript Documentation https://developer.mozilla.org/en-US/docs/Web/JavaScript

[2]. PostgreSQL Documentation https://www.postgresql.org/docs/

[3]. Express.js Documentation https://expressjs.com/

[4]. NodeJS Documentation https://nodejs.org/docs/latest/api/

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.postgresql.org/docs/
https://expressjs.com/

