
Available online www.ejaet.com 

European Journal of Advances in Engineering and Technology, 2023, 10(5):94-97 

 

Research Article ISSN: 2394 - 658X 

 

 

94 

 

Serverless Architecture: Transforming Application Development 

for the Next Generation 
 

Krishna Mohan Pitchikala 
 

_________________________________________________________________________________________

 
ABSTRACT 

In the past, most software development followed monolithic and server-centric architectures, meaning 

developers had to handle everything from provisioning to managing and scaling servers. This process was often 

time-consuming and prone to errors, leading to inefficiencies and increased costs for businesses. Serverless 

architecture was developed to address these issues, making it easier to develop and deploy applications by 

handling infrastructure tasks such as monitoring and managing servers. This approach is not only cost-effective 

but also allows applications to scale easily when needed. Many serverless providers have now emerged, 

offering solutions that take care of tasks like server provisioning, patching, and capacity planning. This allows 

developers to focus on creating valuable features. Many companies are moving towards serverless architectures 

because of the advantages and availability they offer. Like any technology, serverless architecture has some 

drawbacks. However, it has significantly changed how applications are developed by providing a scalable, 

cost-efficient, and simplified deployment method that overcomes these drawbacks. This paper will explore the 

concept of serverless architecture, its core principles, benefits and challenges. We will also discuss a case study 

showing how moving to serverless architecture benefited a company and when it is recommended for a 

company to adopt serverless architecture. 

 

Key words: Serverless Architecture, Transforming Application Development 

__________________________________________________________________________________ 

 
WHAT IS SERVERLESS ARCHITECTURE? 

Before we begin discussing what serverless architecture is, let us first understand what a server-centric 

architecture means. In software and IT systems, the term server-centric architecture refers to the traditional 

method of designing and deploying applications where an organization manages infrastructure such as servers 

and network resources. Usually, it involves one system in which all parts of an application are closely 

interconnected and operate on specific machines that are dedicated for this purpose only. This means that, to 

execute code, there is a need for setting up physical servers (or a cluster of them) which must be maintained 

afterwards. Keeping these machines working properly entails hiring expensive engineers who will take care of 

them day by day. The idea behind introducing serverless architecture was to eliminate this overhead and 

complexity associated with maintaining and managing servers [1, 2]. 

Serverless architecture, also referred to as Function-as-a-Service (FaaS), abstracts away the underlying 

infrastructure and server management tasks from developers. In this model, developers focus solely on writing 

and deploying code functions, while the cloud provider dynamically allocates and manages the compute 

resources required to execute those functions. 

To put it simply, Serverless architecture allows developers to build and run applications without managing 

servers. Instead of creating and maintaining servers, developers use existing public cloud provider managed 

services. These services perform functions such as receiving network requests, running code, storing data, and 

managing files that scale automatically up or down with demand. This method decreases management overheads 

and is cost effective as companies pay only for what they use. 

 

HOW SERVERLESS ARCHITECTURE WORKS? 

Servers allow users to communicate with an application and access its business logic. One of the most popular 

serverless architectures is Function as a Service (FaaS), where developers write their application code as a set of 



Pitchikala KM                                                  Euro. J. Adv. Engg. Tech., 2023, 10(5):94-97 

___________________________________________________________________________ 

95 

 

 

discrete functions. Each function will perform a specific task when triggered by an event, such as a HTTP 

request. When a function is invoked, the cloud provider either runs these functions on existing servers or starts 

new ones when necessary; this happens invisibly to the developer who only writes codes and deploys them. 

 
Figure 1: How Serverless Functions work [6] 

 

While serverless architecture has been around for more than a decade, AWS Lambda was the first FaaS platform 

to become popular, introduced by Amazon in 2014. Google Cloud Functions and Azure Functions also offer 

services that are like AWS Lambda, but most developers use AWS Lambda [6]. 

 

MICROSERVICES AND SERVERLESS: WHAT'S THE DIFFERENCE? 

Microservices and serverless are two different approaches to building applications. Microservices involve 

breaking down an application into smaller, independent services that work together, allowing for better 

organization and scalability. Serverless, on the other hand, focuses on running code without managing the 

underlying servers, with the cloud provider handling the infrastructure. While microservices define the structure 

of an application, serverless defines how the code is executed. Both can be used together (which is often 

recommended) or separately, as they address different aspects of application development. 

 

IS DEVOPS STILL NEEDED WITH SERVERLESS? 

Yes, DevOps is still needed with serverless. While serverless architecture reduces the need for server 

management and simplifies deployment, DevOps practices are still essential. DevOps involves collaboration, 

continuous integration, testing, monitoring, and maintaining the entire application lifecycle, which are all crucial 

even in a serverless environment. Serverless can complement DevOps by automating infrastructure 

management, but it doesn't replace the need for DevOps practices. 

 

KEY PRINCIPLES OF SERVERLESS ARCHITECTURE 

1. Event-Driven Execution: Serverless functions only run when they are needed. They start up in 

response to specific events like someone visiting a website, updating a database, or sending a message, 

which means that they don't run constantly, they only execute when something triggers them. 

2. Automatic Scaling: The cloud automatically adjusts the computing power for your application. When 

there's a lot of traffic, it adds more resources. When there's less traffic, it reduces resources. This 

ensures your application runs smoothly and scales appropriately as needed 

3. Pay-Per-Use Billing: Businesses only pay for the time their functions are running and the resources 

they use, avoiding the cost of unused server capacity 

4. Stateless Functions: Each execution of a serverless function has no knowledge of past executions, in 

other words, it does not remember anything from previous runs but starts afresh every time it is 

invoked hence making them easy to manage and usable at different parts of an application without 

depending on past states 

5. Focus on Business Logic: Developers can write code that solves their business problems directly 

instead of dealing with managing servers and infrastructure complexity which leads to faster 

development and more innovation 

6. Security: While developers need to secure their code, the cloud provider handles the security of the 

underlying infrastructure, such as applying patches to servers and maintaining overall system security 

7. High Availability and Fault Tolerance: Serverless architectures are designed to be highly reliable 

where the provider ensures that your functions are always up and can recover quickly from failures 

even if there is an issue with the underlying hardware or software 



Pitchikala KM                                                  Euro. J. Adv. Engg. Tech., 2023, 10(5):94-97 

___________________________________________________________________________ 

96 

 

 

These principles allow developers to create more efficient, scalable, and manageable applications, letting them 

focus on delivering value instead of managing infrastructure 

 

STRENGTHS OF SERVERLESS ARCHITECTURE 

1. Automated Scaling: The serverless applications adjust their resources to the current demand 

automatically. Therefore, it can handle sudden peaks or drops in traffic without any manual 

intervention. It ensures that the system performs well and remains cost-effective by using resources 

when necessary. This flexibility keeps high performance during busy periods and cuts down on 

expenses during periods of low activity. 

2. Optimization of costs: The organizations can save money by paying only for the resources that they 

use. This model of payment per use is particularly beneficial to applications with unpredictable 

workloads and leads to significant savings. 

3. Higher productivity: Developers can write more code and create new features because they do not 

need to worry about such routine tasks as setting up servers, applying updates or planning for capacity; 

thus enabling them focus on adding value through features enhancement and improvement of 

application. 

4. Improved uptime: With cloud management services, apps become more reliable hence capable of 

handling unexpected loads better than ever before leading into less downtimes therefore providing 

consistent user experience throughout. 

Initially, these may appear as minor advantages but in the development of real-world applications, they are 

crucial. Saving money, automatically scaling and simple maintenance during high traffic are the key benefits of 

serverless architecture. It is because of these strong points that a lot of businesses opt for serverless technology. 

 

CHALLENGES OF SERVERLESS ARCHITECTURE 

1. Vendor Lock-In: Serverless architectures are tied to specific cloud providers. This means that the code 

and infrastructure often rely on the unique features and services of these providers. If a company wants 

to switch to a different cloud provider, they may face significant challenges because they would need to 

reconfigure or rewrite serverless functions, APIs, and other integrations to fit the new provider's 

environment. This dependency on a single provider, known as vendor lock-in, can limit flexibility, 

making it harder to switch vendors for better deals or to distribute workloads across multiple clouds. 

2. Cold Starts: When a serverless function is inactive for a while, it experiences a "cold start" when 

reactivated, leading to slower application performance. This happens because the cloud provider needs 

to allocate resources and initialize the function before it can run. 

3. Monitoring and Debugging: Monitoring and debugging serverless applications is challenging because 

they consist of many small, independent functions spread across different environments. This 

distributed nature makes it hard to track and diagnose issues. Traditional monitoring tools that work 

well for cloud-native and container-based development often don't provide enough features or insights 

for serverless environments. 

4. Execution Times: Serverless functions have limits on how long they can run (e.g., 15 minutes for 

AWS Lambda, 10 minutes for Azure Consumption Plan). These limits can be a problem for tasks that 

need more time and can also be costly. 

 

WHEN TO ADOPT SERVERLESS ARCHITECTURE? 

Serverless architecture in software development offers many benefits and efficiencies. However, no single 

approach, tool, or technology is perfect for all situations. Each has its strengths and weaknesses, and the best 

choice depends on the specific case. Here are scenarios where serverless architecture works best: 

1. Short-running functions: Serverless functions, like AWS Lambda, run for a limited time (up to 15 

minutes). This is usually enough for most tasks, but some applications may need more time. 

2. Un predictable workloads: Serverless is ideal for workloads that change unpredictably throughout the 

day or have seasonal spikes. It can dynamically scale up or down to handle these changes efficiently. 

3. No Vendor lock-in concerns: Major cloud providers like Azure, AWS, and Google Cloud Platform 

offer robust serverless platforms. However, these platforms are not compatible with each other, which 

could be a concern if you want to switch providers. 

Case Study: Success Story with Serverless Architecture 

Joot, a startup focused on optimizing social media and advertising image engagement through AI, utilized the 

Serverless Framework to handle web API, machine learning, and image processing workloads. This approach 

allowed Joot to significantly cut server costs by 70%, streamline development, and reduce devops tasks. They 

orchestrated complex processing pipelines, managed resources efficiently, and benefited from AWS services 

like Lambda, S3, and SageMaker. This resulted in rapid deployment, scalable infrastructure, and enhanced client 

insights, ultimately achieving higher ROI and social engagement [7]. 



Pitchikala KM                                                  Euro. J. Adv. Engg. Tech., 2023, 10(5):94-97 

___________________________________________________________________________ 

97 

 

 

Serverless Cloud Providers: 

Several new players have entered the serverless space in recent years, catering to specific needs. However, their 

services are not as comprehensive as those offered by AWS, Microsoft Azure, or Google Cloud Platform 

AWS Lambda: Amazon Web Services (AWS) is the largest cloud computing provider, offering a vast range of 

tools and services. AWS Lambda stands out with its extensive and well-documented support. It is trusted by 

high-profile customers like Netflix, Samsung and many more. 

Azure Functions: Microsoft Azure is rapidly expanding its capabilities and market share, challenging AWS. 

While it may not match AWS feature-for-feature, Azure excels in .NET and TypeScript integration. It offers 

excellent documentation and community support. 

Google Cloud Functions: Google Cloud Functions competes with AWS Lambda and Azure Functions, offering 

similar features. Google has invested heavily in clear, user-friendly documentation. 

 

CONCLUSION 

Serverless architecture is a major shift in how applications are created. It helps lower operational costs, 

improves scalability, speeds up time to market, and can be more cost-effective. When planning to migrate 

legacy apps or start new projects, considering serverless computing is important. To do this effectively, you 

need to understand the benefits, know how to implement it properly, and be aware of potential challenges like 

vendor lock-in, monitoring issues, security concerns, and cold starts, so you can address them correctly. Despite 

these challenges, the future of serverless technology looks bright. As cloud providers continue to improve their 

serverless offerings and more businesses adopt this model, we will see a significant transformation in how 

applications are developed, deployed, and scaled, preparing them for the next generation of digital experiences. 

 

REFERENCES 

[1]. https://www.oracle.com/cloud/cloud-native/functions/what-is-serverless/ 

[2]. https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith 

[3]. https://www.doc.ic.ac.uk/~rbc/papers/fse-serverless-17.pdf 

[4]. https://kruschecompany.com/serverless-architecture-for-modern-apps-providers-and-

caveats/#Does_Serverless_make_DevOps_redundant 

[5]. https://www.serverless.com/blog/serverless-architecture 

[6]. https://www.datadoghq.com/knowledge-center/serverless-architecture/ 

[7]. https://www.serverless.com/case-studies/joot 

[8]. https://www.semanticscholar.org/reader/6058e777ff668552a01141f110c03e8a32fa7349 

[9]. https://www.researchgate.net/publication/337429660_The_rise_of_serverless_computing 

[10]. https://aws.amazon.com/serverless/ 

[11]. https://azure.microsoft.com/en-us/solutions/serverless/ 

[12]. https://cloud.google.com/serverless 

https://www.oracle.com/cloud/cloud-native/functions/what-is-serverless/
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.doc.ic.ac.uk/~rbc/papers/fse-serverless-17.pdf
https://kruschecompany.com/serverless-architecture-for-modern-apps-providers-and-caveats/#Does_Serverless_make_DevOps_redundant
https://kruschecompany.com/serverless-architecture-for-modern-apps-providers-and-caveats/#Does_Serverless_make_DevOps_redundant
https://www.serverless.com/blog/serverless-architecture
https://www.datadoghq.com/knowledge-center/serverless-architecture/
https://www.serverless.com/case-studies/joot
https://www.semanticscholar.org/reader/6058e777ff668552a01141f110c03e8a32fa7349
https://www.researchgate.net/publication/337429660_The_rise_of_serverless_computing
https://aws.amazon.com/serverless/
https://azure.microsoft.com/en-us/solutions/serverless/
https://cloud.google.com/serverless

