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ABSTRACT  

The aim of this work is to solves the incompressible Navier-Stokes equations in square domain with prescribed 

velocities along the boundary. The solution method is finite differencing on a staggered grid with implicit diffusion 

and a Chorin projection method for the pressure. Visualization is done by a colormap-isoline plot for pressure and 

normalized quiver and streamline plot for the velocity field. The standard setup solves a lid driven cavity problem. 
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INTRODUCTION 

In physics, the Navier–Stokes equations [1], named after Claude-Louis Navier and George Gabriel Stokes, each of 

whom derived these equations independently, are a set of nonlinear partial differential equations which describe the 

motion of viscous fluids and are the fundamental equations of fluid dynamics. These equations result from applying 

Newton's second law [2] to fluid dynamics [3], along with the assumption that the stress in the fluid is the sum of a 

diffusing viscous term [4] (based on the way that the velocity is changing) and a pressure term, describing viscous 

flow.  

The Navier–Stokes equations are based on the work of Leonhard Euler (1707–1783). Euler considered the fluid as a 

continuum allowing him to derive governing equations for the motion of inviscid (non-viscous) fluids based on 

differential calculus [6]. Usually, the Navier-Stokes equations are too complicated to be solved in a closed form. 

However, in some special cases the equations can be simplified and may admit analytical solutions. 

The Navier–Stokes equations are very useful because they describe the physics of many different scientific phenomena 

and are widely used in both science and engineering. Scientists and engineers use the equations in mathematical 

models of weather, ocean currents, water flow in a pipe, air flow around a wing, drag in race cars, optimizing particle 

filters, studying environmental particle transport, how stars move inside a galaxy, and much more. The Navier–Stokes 

equations in their full and simplified forms help with the design of aircraft and cars, the study of blood flow, the design 

of power stations, the analysis of pollution, and many other things. Together with Maxwell's equations (the equations 

for electricity and magnetism) they can be used to model and study how things that can flow and conduct electricity 

can produce (and react to) magnetic fields. 

In this work, a code for incompressible [8], viscous flows is developed. It is an example of a simple numerical method 

for solving the Navier-Stokes equations. It contains fundamental components, such as discretization [9] on a staggered 

grid, an implicit viscosity step, a projection step, as well as the visualization of the solution over time. The main 

priorities of the code are 1. Simplicity and compactness: The whole code is one single MATLAB [10] file of about 

100 lines. 2. Flexibility: The code does not use spectral methods, thus can be modified to more complex domains, 

boundary conditions, and flow laws. 3. Visualization: The evolution of the flow field is visualized while the simulation 
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runs. 4. Computational speed: Full vectorization and pre-solving the arising linear systems in an initialization step 

results in fast time stepping. 

We consider the incompressible Navier-Stokes equations in two space dimensions. 

                       𝑢𝑡 + 𝑝𝑥 = −(𝑢2)𝑥 − (𝑢𝑣)𝑦 +
1

𝑅𝑒
(𝑢𝑥𝑥 + 𝑢𝑦𝑦)                                                     (1) 

                              𝑢𝑡 + 𝑝𝑦 = −(𝑣2)𝑦 − (𝑢𝑣)𝑥 +
1

𝑅𝑒
(𝑢𝑥𝑥 + 𝑢𝑦𝑦)                                                       (2) 

                                                         𝑢𝑥 + 𝑣𝑦 = 0                                                                    (3)                                                                           

on a rectangular domain Ω = [0, lx]×[0,ly]. The four domain boundaries are denoted upward, downward, left, and right. 

The domain is fixed in time, and we consider no-slip boundary conditions on each wall, i.e. 

 u(x,ly) = uN(x) v(x,ly) = 0 

u(x,0) = uS(x) v(x,0) = 0 

u(0,y) = 0 v(0,y) = vW (y) 

u(lx,y) = 0  v(lx,y) = vE(y) 

A derivation of the Navier-Stokes equations can be found in [2]. The momentum equations (1) and (2) describe the 

time evolution of the velocity field (u,v) under inertial and viscous forces. The pressure p is a Lagrange multiplier to 

satisfy the incompressibility condition (3). Note that the momentum equations are already put into a numerics-friendly 

form. The nonlinear terms on the right-hand side equal 

(u2)x + (uv)y = uux + vuy         (4) 

(uv)x + (v2)y = uvx + vvy        (5) 

which follows by the chain rule and equation (3). The above right hand side is often written in vector form as (u · ∇)u. 

We choose to numerically discretize the form on the left-hand side, because it is closer to a conservation form. 

The incompressibility condition is not a time evolution equation, but an algebraic condition. We incorporate this 

condition by using a projection approach [1]: Evolve the momentum equations neglecting the pressure, then project 

onto the subspace of divergence-free velocity fields. 

 

NUMERICAL SOLUTION APPROACH 

While u, v, p and q are the solutions to the Navier-Stokes equations, we denote the numerical approximations by 

capital letters. Assume we have the velocity field Un and V n at the nth time step (time t), and condition (3) is satisfied. 

We find the solution at the (n + 1)st time step (time t + ∆t) by the following three step approach: 

1. Treat nonlinear terms 

The nonlinear terms are treated explicitly. This circumvents the solution of a nonlinear system but introduces a CFL 

condition which limits the time step by a constant times the spacial resolution. 

                                            
𝑈∗−𝑈𝑛

∆𝑡
= −((𝑢𝑛)2)𝑥 − (𝑈𝑛𝑉𝑛)𝑦                                     (6) 

                                             
𝑉∗−𝑉𝑛

∆𝑡
= −(𝑈𝑛𝑉𝑛)𝑥 − ((𝑉𝑛)2)𝑦                                     (7) 

2. Implicit viscosity 

The viscosity terms are treated implicitly. If they were treated explicitly, we would have a time step restriction 

proportional to the spatial discretization squared. We have no such limitation for the implicit treatment. The price to 

pay is two linear systems to be solved in each time step.       

                                                    
𝑈∗∗−𝑈∗

∆𝑡
=

1

𝑅𝑒
(𝑈𝑥𝑥

𝑥𝑥 − 𝑈𝑦𝑦
𝑥𝑥)                                                       (8) 

                                               
𝑉∗∗−𝑉∗

∆𝑡
=

1

𝑅𝑒
(𝑉𝑥𝑥

𝑥𝑥 − 𝑉𝑦𝑦
𝑥𝑥)                                                     (9) 

1. Pressure correction 

We correct the intermediate velocity field (U∗∗, V ∗∗) by the gradient of a pressure Pn+1 to enforce incompressibility. 

                   

                                            
Un+1−Ux∗

∆t
= −(Pn+1)x                                                              (10) 

𝑉𝑛+1−𝑉𝑥∗

∆𝑡
= −(𝑃𝑛+1)𝑥        (11) 

 The pressure is denoted Pn+1 since it is only given implicitly. It is obtained by solving a linear system. In vector 

notation the correction equations read as 

               
1

∆𝑡
𝑈𝑛+1 −

1

∆𝑡
𝑈𝑛 = −∇𝑃𝑛+1       (12) 
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Applying the divergence to both sides yield the linear system: 

                                                       −∇𝑃𝑛+1 = −
1

∆𝑡
∇. 𝑈𝑛                                           (13) 

 

DISCRETIZATION 

The spacial discretization is performed on a staggered grid with the pressure P in the cell midpoints, the velocities U 

placed on the vertical cell interfaces, and the velocities V placed on the horizontal cell interfaces. The stream function 

Q is defined on the cell corners. 

Consider to have nx ×ny cells. Figure 1 shows a staggered grid with nx = 5 and ny = 3. When speaking of the fields P, U 

and V (and Q), care must be taken about interior and boundary points. Any point truly inside the domain is an interior 

point, while points on or outside boundaries are boundary points. Dark markers in Figure 1 stand for interior points, 

while light markers represent boundary points. The fields have the following sizes: 

Table -1 Boundary points 

Field quantity Interior resolution Resolution with boundary points 

pressure P nx × ny (nx + 2) × (ny + 2) 

velocity component U (nx − 1) × ny (nx + 1) × (ny + 2) 

velocity component V nx × (ny − 1) (nx + 2) × (ny + 1) 

stream function Q (nx − 1) × (ny − 1) (nx + 1) × (ny + 1) 

 

The values at boundary points are no unknown variables. For Dirichlet boundary conditions they are prescribed, and 

for Neumann boundary conditions they can be expressed in term of interior points. However, boundary points of U 

and V are used for the finite difference approximation of the nonlinear advection terms. Note that the boundary points 

in the four corners are never used. 

 
Fig. 1 Discrete model with boundary cells 

Finite differences can approximate second derivatives in a grid point by a centered stencil. At an interior point Ui,j 

we approximate the Laplace operator by 

  

∆𝑈𝑖,𝑗 = ((𝑈𝑥𝑥)𝑖,𝑗 + (𝑈𝑦𝑦)𝑖,𝑗) ≈
𝑈𝑖−1,𝑗−2𝑈𝑖,𝑗+𝑈𝑖+1,𝑗

ℎ𝑥
2 +

𝑈𝑖,𝑗−1−2𝑈𝑖,𝑗+𝑈𝑖,𝑗+1

ℎ𝑦
2    

∆𝑈𝑖,𝑗 = ((𝑈𝑥𝑥)𝑖,𝑗 + (𝑈𝑦𝑦)𝑖,𝑗) ≈
𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗

ℎ𝑥
 

The first derivative is applied on the corrected pression and the differentiating is applied for the non linear term. 

The pressure correction and the implicit discretization of the viscosity terms requires linear systems to be solved in 

every time step. Additionally, the computation of the stream function requires another system to be solved whenever 

the data is plotted. Since neither geometry nor discretization change with time, the corresponding system matrices 

remain the same in every step. This means that all matrices can be constructed in an initialization step. Of course, one 

would even wish to compute the inverse matrices in an initialization step, but even for medium grid resolutions these 
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could not be saved, since they are full matrices. Of the many possible approaches to do at least some work in the 

initialization, we propose the following three: 

 • Use Fourier methods based on the fast Fourier transform in the solution step. Initialize memory and constants in the 

setup phase.  

• Compute good preconditioners in the setup phase. Candidates are ILU or multigrid. Save the preconditioners as 

sparse matrices and use them in the solution phase.  

• Use elimination with reordering to compute the inverse matrices exactly, but in a comparably sparse format.  In the 

code the third approach is implemented. Since the matrices are symmetric positive definite, the sparse Cholesky 

decomposition can be used. 

 

RESULTS AND DISCUSION 

We take advantage of the MATLAB data structures and save the field quantities as matrices. Each quantity is stored 

without boundary points, yielding matrices of the following sizes. 

Table -2 Matrix size 

Quantity Matrix size 

U (nx-1).(ny+1) 

V (nx+1).(ny-1) 

P nx.ny 

V (nx-1).(ny-1) 

 

  

Fig. 2 Evolution of the velocity field in square domain 

at t= 1.6 seconds 

Fig. 3 Evolution of the velocity field in square domain 

at t= 3.6 seconds 

 
Fig. 4 Evolution of the velocity field in square domain at t= 4 seconds 

 

The simulation is done with the following the parameters. 
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Re = 0.5e2; Reynolds number 

dt = 1e-2; time step 

tf = 4e-0; final time 

lx = 1; width of box 

ly = 1; height of box 

nx = 100; number of x-gridpoints 

ny = 100; % number of y-gridpoints 

nsteps = 10; number of steps with graphic output 

Figure 2, figure 3 and figure 4 show the evolution of the velocity field inside the square domain at some specific value 

time and at constant Reynolds. Number. The results obtained show that the program implemented in MATLAB work. 

The streamline obtained are shown inside the square but not at wall of the domain. 

                                                                       

CONCLUSION 

The MATLAB code applied is this work shows correct results that means the numerical resolution of equations and 

the boundaries conditions applied are stable. The work could be enlarged with others geometrical domain like 

rectangular cavity, cylinder, or trapezoid. 
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