
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2023, 10(5):124-131

Research Article ISSN: 2394 - 658X

124

Challenges of Injecting ML in A Data Stream and How Vertex AI

and Dataflow Pipelines Circumvent These Challenges

Tulasiram Yadavalli

Computer Science and Engineering,

USA

ABSTRACT

Injecting machine learning (ML) models into real-time data streams presents several challenges. These challenges

include issues such as latency, scalability, throughput, data quality, preprocessing, model drift, and continuous

learning. Latency and scalability become critical when processing large, fast-moving datasets. Throughput is

often hindered by the sheer volume of data. Ensuring data quality is essential to prevent poor model performance.

Preprocessing, a key part of model input, adds complexity when dealing with dynamic data. Additionally, model

drift impacts the reliability of ML models over time. Continuous learning is essential to maintain model relevance

in changing environments. To overcome these challenges, Vertex AI and Dataflow offer scalable, low-latency

solutions. These platforms automate model management and integrate seamlessly into data pipelines, improving

data processing and real-time decision-making. This article explores these challenges and solutions, highlighting

how Vertex AI and Dataflow can address them efficiently.

Keywords: Machine Learning, Real-time Data Streams, Latency, Scalability, Throughput, Data Quality,

Preprocessing, Model Drift, Continuous Learning, Vertex AI, Dataflow Pipelines.

__

INTRODUCTION

In a world where real-time data processing reigns supreme, machine learning (ML) plays a key role in making

informed, data-driven decisions. However, integrating ML into data streams brings several challenges that must be

addressed for effective deployment. Latency is a significant issue in real-time data applications, where delayed

predictions can lead to outdated or irrelevant decisions. Scalability concerns arise as data volumes increase, and the

need to process vast amounts of data in real time becomes a bottleneck. Throughput, the rate at which data is

processed, becomes crucial when managing continuous streams of data.[1]

Moreover, data quality poses a challenge, as noisy or incomplete data can degrade model performance, making

preprocessing an essential step. The nature of real-time data means that models must continually adapt to changing

inputs, a phenomenon known as model drift. Over time, models may lose accuracy if they are not retrained to

account for new patterns in the data. This leads to the need for continuous learning, where the model evolves as new

data arrives.

Vertex AI and Dataflow have emerged as solutions to these challenges. Vertex AI enables end-to-end ML model

management, from training to deployment, offering tools that automate model tuning, monitoring, and retraining.

This minimizes latency and ensures that models remain accurate over time. Dataflow, a fully managed stream

processing service, handles the complexities of scaling real-time data pipelines. It integrates seamlessly with Vertex

AI, allowing for a streamlined flow of data through preprocessing, prediction, and continuous model updating.

These solutions ensure that real-time ML applications are scalable, efficient, and capable of handling the dynamic

nature of streaming data.

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

125

The combination of Vertex AI and Dataflow enables the seamless handling of large, fast-moving datasets,

addressing key challenges like latency, scalability, and model drift. Together, these platforms provide a robust

infrastructure for real-time machine learning, paving the way for scalable, reliable data processing.[2]

LITERATURE REVIEW

Integrating machine learning (ML) into real-time data streams has become critical for industries requiring predictive

maintenance, anomaly detection, and performance optimization. Rousopoulou et al. (2020) focused on using ML

for predictive maintenance in Industry 4.0, emphasizing real-time monitoring to reduce downtime [1].

Distributed dataflow systems play a key role in handling large-scale data. Schelter et al. (2016) introduced Samsara,

a framework for ML on distributed systems that ensures efficient real-time data processing [5]. Anil et al. (2020)

highlighted Apache Mahout, enabling distributed ML, ideal for large datasets in real-time [6].

Gan et al. (2021) presented Sage, an ML-driven debugging tool for microservices, addressing scalability and

performance issues in real-time [2]. In cyber-physical systems, Hallaji et al. (2022) proposed stream learning to

detect false data injection attacks, addressing data quality concerns in real-time streams [3].

Barham et al. (2022) introduced Pathways, an asynchronous distributed dataflow system, optimizing ML processing

and reducing latency [7]. Nowatzki et al. (2017) focused on stream-dataflow acceleration to handle high-throughput

data with minimal latency [8].

PROBLEM: POOR REAL-TIME PERFORMANCE AND RELIABILITY OF INJECTED DATA

The process of injecting machine learning (ML) models into real-time data streams introduces several critical

challenges. These challenges include latency, scalability, throughput, data quality, preprocessing complexity, model

drift, and continuous learning. Each of these challenges must be overcome to maintain real-time performance,

reliable predictions, and efficient data processing. Below, we detail each of these challenges and how they impact

the overall pipeline of integrating ML models with real-time data.[3]

Latency Issues in Real-Time Data Streams

Latency is one of the most significant problems when integrating ML with real-time data streams. In a typical data

stream, high latency can drastically reduce the effectiveness of ML models, as the predictions will become outdated

before they can be used. Latency can occur at multiple stages: data ingestion, preprocessing, prediction generation,

and model retraining. For instance, in an online retail scenario, if the system takes too long to predict user

preferences, by the time the model makes a decision, the customer may have already made a purchase.[4]

A sample data stream injection with ML code might look like this:

Figure 1: Data Stream Injection with ML

In the above code, latency issues can arise during data preprocessing (preprocess(data)) and prediction generation

(model.predict(preprocessed_data)), especially as the stream grows in volume. Latency can cause the output to

become stale, reducing the effectiveness of ML predictions.

Scalability Challenges in Real-Time Data Pipelines

Scalability is another critical problem when injecting ML into data streams. As the volume of data increases, scaling

the processing pipeline to handle higher data throughput becomes a bottleneck. Without proper scalability

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

126

mechanisms, real-time ML models may struggle to handle the massive influx of data, resulting in slower

predictions, increased processing time, or even system crashes.[4]

For instance, in a social media analytics application, if the number of incoming posts increases dramatically, the

system may not scale effectively, causing predictions to lag or fail.

Figure 2: Scalability Problem when injecting data from Google Cloud to Social Media analytics

Here, the problem arises during parallel processing (parallel_process(data)), where improper scaling can cause

significant delays, impacting real-time prediction accuracy. Dataflow pipelines need to be optimized to scale

automatically in response to increased volume, but without proper configuration, they can fail to keep up.

Throughput Limitations

Throughput is the rate at which data is processed, and it becomes a significant challenge when dealing with high-

volume real-time data streams. ML models require rapid ingestion and processing of data to make timely

predictions, but throughput limitations in data streaming systems can cause delays in data processing. If the system

cannot handle the data throughput, the model’s effectiveness in real-time applications diminishes.[3]

Consider an IoT application where real-time sensor data needs to be processed to predict machine failures. If the

throughput is too low, the data will back up, causing predictive maintenance to be ineffective.

Figure 3: Throughput limitations in data

In the above code, if buffer_data(data) is not optimized for high throughput, the system could experience delays in

processing large amounts of data, impacting real-time predictions. Throughput limitations in systems like Dataflow

or Vertex AI must be carefully managed to maintain efficiency.[4]

Data Quality and Preprocessing Complexity

Data quality is paramount in any ML system, but real-time data streams often contain noisy, incomplete, or

unstructured data, which poses significant challenges. Poor-quality data can lead to inaccurate predictions, thereby

reducing the utility of ML models. Data preprocessing, which is a necessary step to ensure quality data, adds

complexity to the pipeline, especially when working with unstructured or streaming data. [4]

For example, in a financial fraud detection system, real-time transactional data may be incomplete, missing values,

or incorrectly formatted. If preprocessing is not robust, it could lead to faulty model predictions.

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

127

Figure 4: Real-time data with missing values

Here, handling missing values (missing_values(data)) and imputing them (impute_data(data)) is a potential

bottleneck. If preprocessing does not efficiently handle large amounts of noisy data, it can slow down the pipeline

and degrade the model’s performance. This preprocessing complexity can be compounded when dealing with

streaming data, which may require real-time cleaning and transformation.[2]

Model Drift Over Time

Model drift is an ongoing challenge in machine learning, particularly when dealing with real-time data streams.

Over time, the underlying patterns in the data may change, making the model's predictions less accurate. This is

known as concept drift or model drift. Continuous learning and model retraining are essential to mitigate drift, but

integrating this process into a real-time data pipeline can be complicated.[1]

For instance, in an e-commerce recommendation system, user behavior can change over time, which may render the

current model obsolete. If not re-trained periodically with new data, the system’s recommendations become

irrelevant.

Figure 5: E-Commerce data injection

In the above code, model drift (detect_drift(model, new_data)) and retraining (retrain_model(model, new_data)) are

crucial to maintaining the model’s performance. The challenge lies in seamlessly integrating this into the data

stream, as retraining can introduce delays and complexity.[3][4]

Continuous Learning in Real-Time Systems

Continuous learning ensures that ML models adapt to new patterns in the data as they arrive, but implementing this

in real-time data streams presents unique challenges. Real-time data streams are dynamic, and models must be

updated frequently to reflect new data trends. However, continuous learning can increase computational overhead

and introduce latency in the system.

For instance, in a dynamic pricing system, continuous learning ensures that the model updates itself as consumer

behavior and market conditions change. However, implementing this in a real-time environment may require

additional infrastructure and careful management to prevent system delays.

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

128

Figure 6: Increased computational load due to continuous updates.

In this example, update_model(model, data) continuously updates the model as new data arrives. While this process

ensures that the model stays up-to-date, it increases the computational load and can introduce delays in prediction,

which is undesirable in real-time applications.

SOLUTION: VERTEX AI AND DATAFLOW

Latency is a primary concern when dealing with real-time data streams, particularly in applications requiring

immediate responses, such as fraud detection, recommendation systems, or dynamic pricing. To minimize latency,

Vertex AI utilizes AutoML and AI Platform Pipelines to quickly deploy optimized machine learning models that

can respond to real-time input with minimal delay. [5]

On the other hand, Google Cloud Dataflow serves as an ideal tool for data stream processing, allowing for parallel

data processing and event-driven architecture that minimizes the time between data ingestion and model prediction.

Dataflow ensures that data is processed in real-time, and that the transformations or predictions on incoming data

happen as soon as possible.

Figure 7: Integration of Vertex AI with Dataflow for minimizing latency during prediction

In the above example, Dataflow reads data from a stream and processes each data point in parallel. The Vertex AI

model is loaded and used to make predictions on the data in near real-time. The key here is that by using Vertex

AI's Model Prediction services, model inference is streamlined to reduce time-to-prediction, while Dataflow

handles the concurrent processing of large streams. This architecture minimizes latency as predictions are made in

real-time while data is being ingested.

Scalability in Real-Time Pipelines with Dataflow

Scalability is critical when dealing with ever-growing volumes of data. As the amount of incoming data increases,

the pipeline must scale dynamically to ensure that the system remains efficient. Dataflow provides an effective

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

129

mechanism for scaling by using Apache Beam and a serverless architecture that can automatically scale in response

to incoming data. It allows for elastic scaling of compute resources, which is particularly useful when processing

high-volume streams of data.

The key to handling scalability with Dataflow lies in the sharding of data streams, and dynamic work distribution,

enabling parallel processing of large datasets without the need for manual intervention. This ensures that regardless

of the data throughput, the system remains performant.[6]

Figure 8: Handling scalability with Dataflow

Here, shard_data(data) function allows the incoming data to be divided into smaller chunks, which can be processed

in parallel by multiple workers in Dataflow.

Enhancing Throughput with Optimized Preprocessing and Vertex AI

Throughput refers to the rate at which data is processed in a system, and it becomes a major concern when

integrating ML models with data streams. Dataflow addresses throughput challenges by providing batch processing

capabilities, allowing for high-throughput ingestion of large data volumes while maintaining low latency. The key

to achieving high throughput lies in parallel data processing and optimized batch transformations within the

Dataflow pipeline.[7]

For preprocessing tasks that involve large datasets, Dataflow can use windowing and grouping to ensure that data is

processed in manageable chunks, enabling efficient use of resources. Additionally, Vertex AI’s AutoML and

BigQuery ML can be integrated to process and refine data at scale before passing it through the ML pipeline.

Figure 9: Dataflow For preprocessing.

In this code, window_data(data) splits the data into smaller, more manageable batches, and

process_batch(batch_data) handles the preprocessing. Using windowing, the system can handle large streams of

data and apply transformations to small windows of data at a time, ensuring optimal throughput without

overloading the system.[8]

Handling Data Quality and Preprocessing with Vertex AI and Dataflow

Data quality is a fundamental challenge when injecting real-time data streams into machine learning models. Often,

the data stream may contain noisy, incomplete, or erroneous data that can undermine the accuracy of predictions.

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

130

Dataflow facilitates the use of custom data preprocessing pipelines to clean, transform, and filter data before it is

passed to the model for prediction.

Vertex AI allows for model training with high-quality datasets, and its integration with BigQuery allows for

preprocessing tasks like data normalization, missing data imputation, and outlier removal to be executed efficiently.

Dataflow handles the real-time transformations on the stream, such as removing noise or correcting inconsistencies

in the incoming data, ensuring that only high-quality data enters the model pipeline.

Figure 10: Vertex AI for model training

In the above example, missing_values(data) checks for missing entries, and impute_data(data) handles data

imputation. Additionally, remove_outliers(data) ensures that outliers do not skew the predictions. This

preprocessing pipeline ensures that only the cleanest, most reliable data is used for predictions, thereby increasing

the overall accuracy of the ML model.

Managing Model Drift and Continuous Learning in Real-Time Data Streams

Model drift occurs when a machine learning model's performance degrades over time due to changes in data

patterns. In real-time systems, continuous learning is required to keep the model updated with fresh data, mitigating

the effects of model drift. Vertex AI offers automatic model retraining through continuous training pipelines,

ensuring that models stay up-to-date as new data flows in.[9]

Dataflow complements this by providing real-time data ingestion and transformation, triggering model retraining

and serving fresh predictions in near real-time. With Vertex AI's continuous learning pipelines, the system can

automatically detect when model performance begins to degrade and initiate retraining based on the latest data.

Figure 11: Dataflow for drift management

Here, the check_model_performance(model, new_data) monitors the model's performance on incoming data. If the

performance drops below a threshold, retrain_model(model, new_data) triggers a retraining process using the latest

data. This ensures that the model adapts to shifts in data patterns and continues to provide accurate predictions.[6]

ANALYSIS AND RECOMMENDATIONS

• Latency Reduction: Vertex AI and Dataflow work together to minimize latency in real-time data streams.

Using AutoML for lightweight model deployment and Dataflow’s parallel data processing, it’s essential to

Yadavalli T Euro. J. Adv. Engg. Tech., 2023, 10(5):124-131

131

optimize the model’s inference time. Ensure that models are optimized for performance to avoid delays in

prediction.

• Scalability: Dataflow’s serverless architecture provides dynamic scaling in response to growing data

volumes. Continuously monitor the data stream’s size and adjust resource allocation in Dataflow to maintain

performance.

• Throughput Optimization: Dataflow's windowing and batch processing improve throughput in high-

volume environments. Design your data pipeline with appropriate windowing strategies to balance between

data latency and throughput.

• Data Quality: Proper preprocessing in Dataflow can prevent low-quality data from impacting model

accuracy. Implement data validation and imputation strategies within Dataflow pipelines to ensure only clean

data enters the model.

• Model Drift and Continuous Learning: Vertex AI’s retraining capabilities ensure models adapt to data

shifts. Set up automated retraining schedules to continuously update models based on the most recent data,

reducing the risk of model drift.

CONCLUSION

With the help of Vertex AI and Dataflow provides an effective solution for addressing key challenges in real-time

data stream integration with machine learning models. These tools offer robust mechanisms for managing latency,

scalability, throughput, data quality, and continuous learning, ensuring a streamlined and adaptive data pipeline. By

following best practices for model optimization, resource scaling, and automated retraining, organizations can

maintain high performance and ensure accurate predictions over time.

REFERENCES

[1]. Rousopoulou, V., Nizamis, A., Vafeiadis, T., Ioannidis, D., & Tzovaras, D. (2020). Predictive maintenance

for injection molding machines enabled by cognitive analytics for industry 4.0. Frontiers in Artificial

Intelligence, 3, 578152.

[2]. Gan, Y., Liang, M., Dev, S., Lo, D., & Delimitrou, C. (2021, April). Sage: practical and scalable ML-

driven performance debugging in microservices. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems (pp. 135-151).

[3]. Hallaji, E., Razavi-Far, R., Wang, M., Saif, M., & Fardanesh, B. (2022). A stream learning approach for

real-time identification of false data injection attacks in cyber-physical power systems. IEEE Transactions

on Information Forensics and Security, 17, 3934-3945.

[4]. Riggs, H., Tufail, S., Khan, M., Parvez, I., & Sarwat, A. I. (2021, April). Detection of false data injection

of pv production. In 2021 IEEE Green Technologies Conference (GreenTech) (pp. 7-12). IEEE.

[5]. Schelter, S., Palumbo, A., Quinn, S., Marthi, S., & Musselman, A. (2016). Samsara: Declarative machine

learning on distributed dataflow systems. In NIPS Workshop MLSystems.

[6]. Anil, R., Capan, G., Drost-Fromm, I., Dunning, T., Friedman, E., Grant, T., ... & Yılmazel, Ö. (2020).

Apache mahout: Machine learning on distributed dataflow systems. Journal of Machine Learning

Research, 21(127), 1-6.

[7]. Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand, S., Hurt, D., ... & Wu, Y. (2022). Pathways:

Asynchronous distributed dataflow for ml. Proceedings of Machine Learning and Systems, 4, 430-449.

[8]. Nowatzki, T., Gangadhar, V., Ardalani, N., & Sankaralingam, K. (2017, June). Stream-dataflow

acceleration. In Proceedings of the 44th Annual International Symposium on Computer Architecture (pp.

416-429).

[9]. Wagner, C., François, J., State, R., & Engel, T. (2011). Machine learning approach for ip-flow record

anomaly detection. In NETWORKING 2011: 10th International IFIP TC 6 Networking Conference,

Valencia, Spain, May 9-13, 2011, Proceedings, Part I 10 (pp. 28-39). Springer Berlin Heidelberg.

