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ABSTRACT 

The rapid growth in mobile applications has led to an exponential increase in the number of events generated and 

transmitted for analytics purposes. This surge in data volume significantly impacts data costs and performance for 

clients, while also demanding more resources for backend processing. In this paper, we propose an innovative 

approach to mitigate these challenges by reducing the footprint of events through efficient grouping and 

redundancy elimination. Our method involves aggregating related events into predefined buckets and optimizing 

storage by removing redundant data, retaining only a single copy of common elements within each bucket. This 

strategy not only alleviates the data load on client uploads but also reduces the computational and storage 

resources required for backend processing. Initial evaluations show that our approach reduces data transmission 

size by an average of 26.7%, demonstrating its effectiveness in enhancing overall system performance. This 

scalable solution addresses the growing demands of mobile analytics by significantly reducing data transmission 

costs and resource utilization. 

 

Keywords: Mobile application analytics, Events grouping, data footprint, redundancy mitigation, resource 

efficiency, data pre-processing. 

____________________________________________________________________________________ 
 

INTRODUCTION 

In the realm of mobile analytics, applications continuously generate a vast number of events to capture user 

interactions, system states, and other pertinent information. As mobile applications become more sophisticated and 

data-driven, the volume of events sent to analytics backends has surged dramatically. This increase poses significant 

challenges for both client-side devices and backend infrastructure. 

On the client side, the continuous transmission of a large number of events can lead to several issues. High data 

transmission volumes can escalate data costs for users, especially when operating on metered connections. 

Additionally, the constant upload of events can strain device performance, consuming battery life, and processing 

power, potentially degrading the user experience. These factors underscore the necessity for efficient data 

management strategies that can minimize the data load without compromising the quality and granularity of 

analytics. 

From the backend perspective, the influx of numerous events demands substantial computational resources for data 

ingestion, storage, and preprocessing. This can lead to increased operational costs and complexity in managing the 

analytics infrastructure. The need to process large volumes of redundant data can also introduce latency, impacting 

the timeliness and accuracy of insights derived from the data. Therefore, reducing the volume of redundant and 

unnecessary data becomes critical for maintaining efficient and cost-effective backend operations. 

To address these challenges, there is an urgent need for approaches that can optimize the data footprint of mobile 

analytics events. By reducing the amount of data transmitted and stored, we can achieve significant improvements 

in both client-side efficiency and backend resource utilization. This paper proposes an innovative algorithm that 

groups related events into relevant buckets and eliminates redundant data within these buckets. This method not 

only reduces the data load on client uploads but also decreases the processing and storage requirements on the 

backend. 

In the following sections, we will explore deeper into the specifics of this proposed algorithm, exploring its design, 

implementation, and the potential benefits it offers for both clients and backend systems. 
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APPROACH 

The core idea of our approach is to identify and isolate redundant data present in a significant number of events. By 

extracting this redundant information and maintaining it separately, we can substantially reduce the overall data 

footprint. This method involves grouping related events into buckets and linking these events to their respective 

redundant data, thereby optimizing storage and transmission efficiency. 

Step-by-Step Process: 

● Identify Redundant Data: Analyze the events to identify data that appears repeatedly across multiple events. 

Common examples include user IDs, session IDs, device types, app versions, and location data. 

● Extract and Create Buckets for Redundant data: Pull out the redundant data from the events and maintain it in 

a separate structure. This structure should have some reference mechanism that could be used to associate each 

event with. 

● Link Events to Redundant Data: Modify the original events to remove the redundant information and instead 

include a reference to the corresponding entry in the redundant data structure. This can be achieved using unique 

identifiers. 

● Store and Transmit Optimized Data: Store the modified events and the reference table separately. When 

transmitting data, send the optimized events along with the reference table, reducing the overall data size. 

 

 
 

DETAILS 

By analyzing various analytics data from multiple applications, it was found that a set of columns often contains 

significantly redundant information. These columns, while slightly varying per application based on its specific 

needs, typically include details related to the device, operating system, or application itself. Common examples of 

such redundant data include device model, OS version, and application version. This information remains consistent 

across multiple events for a given client, as device models do not change frequently and application versions only 

change when updated by the user. 

Given the application-specific nature of redundant data, it is recommended that each application defines its own set 

of columns to be treated as redundant. This allows for a tailored approach that suits the unique analytics 

requirements of each application. For example, an application's context information for events might include device 

type, OS version, and app version, which do not vary per event and can thus be effectively grouped and stored 

separately to minimize redundancy. 

Typical info which are redundant among events per app-client: 

 

Device id 

model 

OS build number 

name 

version 

app pkg name 

version 

user id 

network Mobile Country Code(mcc) 

Mobile Network Code (mnc) 

 

 

 

   



Arrojula SP                                                        Euro. J. Adv. Engg. Tech., 2023, 10(1):124-129 

 

 

126 

 

 

 

This is just a rough idea but not limited to how much info could be a candidate for Context data. 

Extracting and Creating Buckets for Redundant Data 

We propose an algorithm for the analytics solution integrated within the client application. This algorithm extracts 

and groups the redundant information, storing it in a separate structure, such as a database table. The process 

involves keeping track of all the context data stored to avoid duplication. The context structure includes a record ID 

column and an event count column, along with the columns identified as context. 

For example, we declare two separate tables: one for context data (Tc) and one for the rest of the event data (Te). 

The exact table structure will vary per application and analytics solution, but the general algorithm remains the 

same. 

Pseudo Algorithm for Storing Event Data 

The following pseudo algorithm outlines the process of storing event data with the proposed approach: 

1. Define Structures: 

 

define Table Context: Tc 

define Table Event: Te, with a reference link to Tc 

define a hashmap for Context data, mContextHashMap 

 

The hashmap (mContextHashMap) helps to quickly check for existing context data entries, offering better 

performance than querying the database for each event. 

2. Process Each Event: 

 

for every event fired: 

    # Extract context information 

    context_data = get_context_information(event) 

     

    # Compute hash of the context data 

    context_hash = hash_function(context_data) 

     

    # Check if the context data already exists 

    if context_hash in mContextHashMap: 

        record_id = mContextHashMap[context_hash] 

    else: 

        # Store new context data in Tc and update hashmap 

        record_id = store_context_in_Tc(context_data) 

        mContextHashMap[context_hash] = record_id 

     

    # Store the event data in Te with a reference to the context record ID 

    store_event_in_Te(event, record_id) 

     

    # Increment event count for the context data 

    increment_event_count_in_Tc(record_id) 

 

In this algorithm, the context data for each event is extracted and hashed. If the hash exists in the hashmap, the 

corresponding record ID is retrieved, avoiding duplication. If the hash does not exist, the context data is stored in 

the context table (Tc), and the hash is added to the hashmap. The event data, minus the context information, is then 

stored in the event table (Te) with a reference to the context record ID. Finally, the event count for the 

corresponding context record is incremented. 

Example of Optimized Storage 

Consider the following initial table of events: 

 

Event ID User ID Session ID Event Type Timestamp Device Type App Version 

1 123 A1 Click 2023-08-01 10:00 iPhone 12 1.2.3 

2 123 A1 Swipe 2023-08-01 10:01 iPhone 12 1.2.3 

3 456 B2 Click 2023-08-01 10:02 Galaxy S21 2.1.4 

4 456 B2 Tap 2023-08-01 10:03 Galaxy S21 2.1.4 

 

After applying the algorithm, we separate the redundant context data into a context table (Tc) and link events to this 

context: 
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Context Data Table (Tc): 

Ref ID User ID Session ID Device Type App Version EventCount 

1 123 A1 iPhone 12 1.2.3 2 

2 456 B2 Galaxy S21 2.1.4 2 

 

Optimized Events Table (Te): 

 

Event ID Ref ID Event Type Timestamp 

1 1 Click 2023-08-01 10:00 

2 1 Swipe 2023-08-01 10:01 

3 2 Click 2023-08-01 10:02 

4 2 Tap 2023-08-01 10:03 

 

When uploading, events are batched into small chunks and each chunk is processed individually for upload. This 

batching approach ensures efficient data transmission and minimizes the impact on both client and backend 

resources. Below is the detailed process for preparing and uploading these payloads. 

Preparing and Uploading Payloads 

Query Chunk of Events: 

● Retrieve a chunk of the oldest events (e.g., 100 events) from the ‘Te’ table. 

● Add these events to the payload under the ‘events’ field. 

Query Distinct Ref-Record-IDs: 

● Identify all distinct reference record IDs (ref-record-ids) associated with the events in the payload. 

● Query the number of events for each reference record ID within the payload to create a map of ref-record-

id:event-count (mEventCountMap). 

Query Context Data: 

● Retrieve all context data for the identified reference record IDs. 

● Attach this context data to the payload under the ‘context’ field. 

Upload Payload: 

● Construct the final payload containing the batched events and the associated context data. 

● Upload the payload to the backend. 

Post-Upload Processing: 

● Upon successful upload, process each reference ID in the mEventCountMap to update the context table. 

Update corresponding context records: 

● Update the ‘event-count’ in the context table (Tc): subtract the corresponding event count from 

mEventCountMap. 

● If the updated event count is zero, delete the entry for that reference ID from the context table. 

● Remove the corresponding entry for that context data from mContextHashMap if the event count is zero. 

Detailed Pseudo Algorithm for Upload Process 

 

# Function to prepare and upload payloads 

def upload_events(): 

    while True: 

        # Step 1: Query chunk of events 

        events_chunk = query_oldest_events(Te, limit=100) 

         

        if not events_chunk: 

            break 

         

        payload = {'events': events_chunk} 

         

        # Step 2: Query distinct ref-record-ids 

        ref_record_ids = get_distinct_ref_ids(events_chunk) 

         

        # Step 3: Query number of events per ref-record-id 

        mEventCountMap = query_event_counts_per_ref_id(events_chunk) 

         

        # Step 4: Query context data 

        context_data = query_context_data(ref_record_ids) 

        payload['context'] = context_data 
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        # Step 5: Upload payload 

        if upload_payload(payload): 

            # Step 6: Post-upload processing 

            for ref_id, event_count in mEventCountMap.items(): 

                # Update context table 

                current_event_count = query_event_count_from_Tc(ref_id) 

                new_event_count = current_event_count - event_count 

                 

                if new_event_count <= 0: 

                    # Delete context entry if event count is zero 

                    delete_context_entry(ref_id) 

                    mContextHashMap.pop(ref_id, None) 

                else: 

                    # Update context entry with new event count 

                    update_event_count_in_Tc(ref_id, new_event_count) 

                 

                # Remove processed events from events table 

                remove_events_from_Te(events_chunk) 

        else: 

            # Handle upload failure (retry logic, logging, etc.) 

            break 

 

In this detailed approach, the algorithm ensures that the context data is efficiently managed, and redundant 

information is minimized. The steps for preparing and uploading payloads are designed to reduce data transmission 

costs, optimize storage, and enhance processing efficiency on both the client and backend sides. By maintaining 

context data separately and linking events to this data, we achieve a significant reduction in the data footprint, 

leading to more scalable and sustainable mobile analytics practices. 

 

FINDINGS 

The theoretical foundation of the proposed algorithm suggests that grouping redundant context data should 

significantly reduce the data footprint. To verify this in a practical setting, we conducted an A/B testing experiment. 

However, achieving a perfect comparison (apple-to-apple) was challenging due to the unique nature of user 

behavior and analytic events. Variables such as timestamps, location, and other device states would differ even if 

users followed the same flow. 

To address this, we developed a demo application with a moderate user interface and comprehensive analytics event 

instrumentation. The caching and uploading subsystem had two parallel implementations: one using the context 

grouping algorithm and the other without it. Both implementations uploaded data to separate endpoints on the 

backend. 

Experiment Setup: 

● Participants: We asked 10 developers to interact with the application for 10 to 15 minutes per session, over 10 

sessions. 

● Data Uploads: The application uploaded cached data during idle times after each session. Each implementation 

(grouped and non-grouped) uploaded its respective cache to distinct backend endpoints. 

At the end of the experiment, the backend contained two sets of analytics data: 

● With Context Grouping: Events uploaded using the proposed algorithm, where redundant data was grouped. 

● Without Context Grouping: Events uploaded without applying the grouping algorithm. 

 Results are shown below. 
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Results: 

Data Footprint Reduction: 

● As we can see in the chart, the data footprint at the endpoint with context grouping was significantly smaller than 

the one without grouping in all of the sessions. 

● On average, the grouped data was 26.7% smaller in size compared to the non-grouped data. 

Resource Utilization: 

● Backend processing for the grouped data required fewer resources. The reduction in redundant data meant less 

computational overhead for data ingestion and storage. 

● The context grouping mechanism streamlined the data, making it more efficient to process and store. 

Upload Efficiency: 

● The upload times for the grouped data were noticeably shorter, reducing the data transmission costs and the 

energy consumption on the client side. 

● By minimizing redundant uploads, the network bandwidth usage was optimized, leading to a smoother and more 

efficient data upload process. 

 

CONCLUSION 

 The practical exercise confirmed the theoretical benefits of the context grouping algorithm. By effectively reducing 

the data footprint, optimizing resource utilization, and enhancing upload efficiency, the proposed method proved to 

be a valuable enhancement for mobile analytics systems. This approach not only benefits the client side by reducing 

data transmission costs and energy consumption but also significantly improves backend processing efficiency, 

making it a scalable and sustainable solution for handling large volumes of analytics data. 
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