
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2023, 10(1):124-129

Research Article ISSN: 2394 - 658X

124

Efficient Event Grouping Algorithm for Mobile Analytics: Reducing

Data Footprint

Sambu Patach Arrojula

Email: sambunikhila@gmail.com

ABSTRACT

The rapid growth in mobile applications has led to an exponential increase in the number of events generated and

transmitted for analytics purposes. This surge in data volume significantly impacts data costs and performance for

clients, while also demanding more resources for backend processing. In this paper, we propose an innovative

approach to mitigate these challenges by reducing the footprint of events through efficient grouping and

redundancy elimination. Our method involves aggregating related events into predefined buckets and optimizing

storage by removing redundant data, retaining only a single copy of common elements within each bucket. This

strategy not only alleviates the data load on client uploads but also reduces the computational and storage

resources required for backend processing. Initial evaluations show that our approach reduces data transmission

size by an average of 26.7%, demonstrating its effectiveness in enhancing overall system performance. This

scalable solution addresses the growing demands of mobile analytics by significantly reducing data transmission

costs and resource utilization.

Keywords: Mobile application analytics, Events grouping, data footprint, redundancy mitigation, resource

efficiency, data pre-processing.

__

INTRODUCTION

In the realm of mobile analytics, applications continuously generate a vast number of events to capture user

interactions, system states, and other pertinent information. As mobile applications become more sophisticated and

data-driven, the volume of events sent to analytics backends has surged dramatically. This increase poses significant

challenges for both client-side devices and backend infrastructure.

On the client side, the continuous transmission of a large number of events can lead to several issues. High data

transmission volumes can escalate data costs for users, especially when operating on metered connections.

Additionally, the constant upload of events can strain device performance, consuming battery life, and processing

power, potentially degrading the user experience. These factors underscore the necessity for efficient data

management strategies that can minimize the data load without compromising the quality and granularity of

analytics.

From the backend perspective, the influx of numerous events demands substantial computational resources for data

ingestion, storage, and preprocessing. This can lead to increased operational costs and complexity in managing the

analytics infrastructure. The need to process large volumes of redundant data can also introduce latency, impacting

the timeliness and accuracy of insights derived from the data. Therefore, reducing the volume of redundant and

unnecessary data becomes critical for maintaining efficient and cost-effective backend operations.

To address these challenges, there is an urgent need for approaches that can optimize the data footprint of mobile

analytics events. By reducing the amount of data transmitted and stored, we can achieve significant improvements

in both client-side efficiency and backend resource utilization. This paper proposes an innovative algorithm that

groups related events into relevant buckets and eliminates redundant data within these buckets. This method not

only reduces the data load on client uploads but also decreases the processing and storage requirements on the

backend.

In the following sections, we will explore deeper into the specifics of this proposed algorithm, exploring its design,

implementation, and the potential benefits it offers for both clients and backend systems.

Arrojula SP Euro. J. Adv. Engg. Tech., 2023, 10(1):124-129

125

APPROACH

The core idea of our approach is to identify and isolate redundant data present in a significant number of events. By

extracting this redundant information and maintaining it separately, we can substantially reduce the overall data

footprint. This method involves grouping related events into buckets and linking these events to their respective

redundant data, thereby optimizing storage and transmission efficiency.

Step-by-Step Process:

● Identify Redundant Data: Analyze the events to identify data that appears repeatedly across multiple events.

Common examples include user IDs, session IDs, device types, app versions, and location data.

● Extract and Create Buckets for Redundant data: Pull out the redundant data from the events and maintain it in

a separate structure. This structure should have some reference mechanism that could be used to associate each

event with.

● Link Events to Redundant Data: Modify the original events to remove the redundant information and instead

include a reference to the corresponding entry in the redundant data structure. This can be achieved using unique

identifiers.

● Store and Transmit Optimized Data: Store the modified events and the reference table separately. When

transmitting data, send the optimized events along with the reference table, reducing the overall data size.

DETAILS

By analyzing various analytics data from multiple applications, it was found that a set of columns often contains

significantly redundant information. These columns, while slightly varying per application based on its specific

needs, typically include details related to the device, operating system, or application itself. Common examples of

such redundant data include device model, OS version, and application version. This information remains consistent

across multiple events for a given client, as device models do not change frequently and application versions only

change when updated by the user.

Given the application-specific nature of redundant data, it is recommended that each application defines its own set

of columns to be treated as redundant. This allows for a tailored approach that suits the unique analytics

requirements of each application. For example, an application's context information for events might include device

type, OS version, and app version, which do not vary per event and can thus be effectively grouped and stored

separately to minimize redundancy.

Typical info which are redundant among events per app-client:

Device id

model

OS build number

name

version

app pkg name

version

user id

network Mobile Country Code(mcc)

Mobile Network Code (mnc)

Arrojula SP Euro. J. Adv. Engg. Tech., 2023, 10(1):124-129

126

This is just a rough idea but not limited to how much info could be a candidate for Context data.

Extracting and Creating Buckets for Redundant Data

We propose an algorithm for the analytics solution integrated within the client application. This algorithm extracts

and groups the redundant information, storing it in a separate structure, such as a database table. The process

involves keeping track of all the context data stored to avoid duplication. The context structure includes a record ID

column and an event count column, along with the columns identified as context.

For example, we declare two separate tables: one for context data (Tc) and one for the rest of the event data (Te).

The exact table structure will vary per application and analytics solution, but the general algorithm remains the

same.

Pseudo Algorithm for Storing Event Data

The following pseudo algorithm outlines the process of storing event data with the proposed approach:

1. Define Structures:

define Table Context: Tc

define Table Event: Te, with a reference link to Tc

define a hashmap for Context data, mContextHashMap

The hashmap (mContextHashMap) helps to quickly check for existing context data entries, offering better

performance than querying the database for each event.

2. Process Each Event:

for every event fired:

 # Extract context information

 context_data = get_context_information(event)

 # Compute hash of the context data

 context_hash = hash_function(context_data)

 # Check if the context data already exists

 if context_hash in mContextHashMap:

 record_id = mContextHashMap[context_hash]

 else:

 # Store new context data in Tc and update hashmap

 record_id = store_context_in_Tc(context_data)

 mContextHashMap[context_hash] = record_id

 # Store the event data in Te with a reference to the context record ID

 store_event_in_Te(event, record_id)

 # Increment event count for the context data

 increment_event_count_in_Tc(record_id)

In this algorithm, the context data for each event is extracted and hashed. If the hash exists in the hashmap, the

corresponding record ID is retrieved, avoiding duplication. If the hash does not exist, the context data is stored in

the context table (Tc), and the hash is added to the hashmap. The event data, minus the context information, is then

stored in the event table (Te) with a reference to the context record ID. Finally, the event count for the

corresponding context record is incremented.

Example of Optimized Storage

Consider the following initial table of events:

Event ID User ID Session ID Event Type Timestamp Device Type App Version

1 123 A1 Click 2023-08-01 10:00 iPhone 12 1.2.3

2 123 A1 Swipe 2023-08-01 10:01 iPhone 12 1.2.3

3 456 B2 Click 2023-08-01 10:02 Galaxy S21 2.1.4

4 456 B2 Tap 2023-08-01 10:03 Galaxy S21 2.1.4

After applying the algorithm, we separate the redundant context data into a context table (Tc) and link events to this

context:

Arrojula SP Euro. J. Adv. Engg. Tech., 2023, 10(1):124-129

127

Context Data Table (Tc):

Ref ID User ID Session ID Device Type App Version EventCount

1 123 A1 iPhone 12 1.2.3 2

2 456 B2 Galaxy S21 2.1.4 2

Optimized Events Table (Te):

Event ID Ref ID Event Type Timestamp

1 1 Click 2023-08-01 10:00

2 1 Swipe 2023-08-01 10:01

3 2 Click 2023-08-01 10:02

4 2 Tap 2023-08-01 10:03

When uploading, events are batched into small chunks and each chunk is processed individually for upload. This

batching approach ensures efficient data transmission and minimizes the impact on both client and backend

resources. Below is the detailed process for preparing and uploading these payloads.

Preparing and Uploading Payloads

Query Chunk of Events:

● Retrieve a chunk of the oldest events (e.g., 100 events) from the ‘Te’ table.

● Add these events to the payload under the ‘events’ field.

Query Distinct Ref-Record-IDs:

● Identify all distinct reference record IDs (ref-record-ids) associated with the events in the payload.

● Query the number of events for each reference record ID within the payload to create a map of ref-record-

id:event-count (mEventCountMap).

Query Context Data:

● Retrieve all context data for the identified reference record IDs.

● Attach this context data to the payload under the ‘context’ field.

Upload Payload:

● Construct the final payload containing the batched events and the associated context data.

● Upload the payload to the backend.

Post-Upload Processing:

● Upon successful upload, process each reference ID in the mEventCountMap to update the context table.

Update corresponding context records:

● Update the ‘event-count’ in the context table (Tc): subtract the corresponding event count from

mEventCountMap.

● If the updated event count is zero, delete the entry for that reference ID from the context table.

● Remove the corresponding entry for that context data from mContextHashMap if the event count is zero.

Detailed Pseudo Algorithm for Upload Process

Function to prepare and upload payloads

def upload_events():

 while True:

 # Step 1: Query chunk of events

 events_chunk = query_oldest_events(Te, limit=100)

 if not events_chunk:

 break

 payload = {'events': events_chunk}

 # Step 2: Query distinct ref-record-ids

 ref_record_ids = get_distinct_ref_ids(events_chunk)

 # Step 3: Query number of events per ref-record-id

 mEventCountMap = query_event_counts_per_ref_id(events_chunk)

 # Step 4: Query context data

 context_data = query_context_data(ref_record_ids)

 payload['context'] = context_data

Arrojula SP Euro. J. Adv. Engg. Tech., 2023, 10(1):124-129

128

 # Step 5: Upload payload

 if upload_payload(payload):

 # Step 6: Post-upload processing

 for ref_id, event_count in mEventCountMap.items():

 # Update context table

 current_event_count = query_event_count_from_Tc(ref_id)

 new_event_count = current_event_count - event_count

 if new_event_count <= 0:

 # Delete context entry if event count is zero

 delete_context_entry(ref_id)

 mContextHashMap.pop(ref_id, None)

 else:

 # Update context entry with new event count

 update_event_count_in_Tc(ref_id, new_event_count)

 # Remove processed events from events table

 remove_events_from_Te(events_chunk)

 else:

 # Handle upload failure (retry logic, logging, etc.)

 break

In this detailed approach, the algorithm ensures that the context data is efficiently managed, and redundant

information is minimized. The steps for preparing and uploading payloads are designed to reduce data transmission

costs, optimize storage, and enhance processing efficiency on both the client and backend sides. By maintaining

context data separately and linking events to this data, we achieve a significant reduction in the data footprint,

leading to more scalable and sustainable mobile analytics practices.

FINDINGS

The theoretical foundation of the proposed algorithm suggests that grouping redundant context data should

significantly reduce the data footprint. To verify this in a practical setting, we conducted an A/B testing experiment.

However, achieving a perfect comparison (apple-to-apple) was challenging due to the unique nature of user

behavior and analytic events. Variables such as timestamps, location, and other device states would differ even if

users followed the same flow.

To address this, we developed a demo application with a moderate user interface and comprehensive analytics event

instrumentation. The caching and uploading subsystem had two parallel implementations: one using the context

grouping algorithm and the other without it. Both implementations uploaded data to separate endpoints on the

backend.

Experiment Setup:

● Participants: We asked 10 developers to interact with the application for 10 to 15 minutes per session, over 10

sessions.

● Data Uploads: The application uploaded cached data during idle times after each session. Each implementation

(grouped and non-grouped) uploaded its respective cache to distinct backend endpoints.

At the end of the experiment, the backend contained two sets of analytics data:

● With Context Grouping: Events uploaded using the proposed algorithm, where redundant data was grouped.

● Without Context Grouping: Events uploaded without applying the grouping algorithm.

 Results are shown below.

Arrojula SP Euro. J. Adv. Engg. Tech., 2023, 10(1):124-129

129

Results:

Data Footprint Reduction:

● As we can see in the chart, the data footprint at the endpoint with context grouping was significantly smaller than

the one without grouping in all of the sessions.

● On average, the grouped data was 26.7% smaller in size compared to the non-grouped data.

Resource Utilization:

● Backend processing for the grouped data required fewer resources. The reduction in redundant data meant less

computational overhead for data ingestion and storage.

● The context grouping mechanism streamlined the data, making it more efficient to process and store.

Upload Efficiency:

● The upload times for the grouped data were noticeably shorter, reducing the data transmission costs and the

energy consumption on the client side.

● By minimizing redundant uploads, the network bandwidth usage was optimized, leading to a smoother and more

efficient data upload process.

CONCLUSION

 The practical exercise confirmed the theoretical benefits of the context grouping algorithm. By effectively reducing

the data footprint, optimizing resource utilization, and enhancing upload efficiency, the proposed method proved to

be a valuable enhancement for mobile analytics systems. This approach not only benefits the client side by reducing

data transmission costs and energy consumption but also significantly improves backend processing efficiency,

making it a scalable and sustainable solution for handling large volumes of analytics data.

REFERENCES

[1]. https://www.singular.net/glossary/app-analytics/

[2]. https://amplitude.com/guides/mobile-analytics

[3]. https://hyperight.com/data-and-analytics-trends-that-will-loom-large-in-2021-and-beyond/

[4]. https://www.smartlook.com/blog/trends-analytics-2021/

[5]. https://www.acumenresearchandconsulting.com/data-analytics-market

